HUMAN Sample Experiment High Altitude Simulation

(a one variable experiment)

(version 18 Aug., 2011)

All *web*-HUMAN experiments, like their wet lab counterparts, involve changing one or more parameters and monitoring the response of relevant physiological variables. In the least complex design, only one parameter is changed. This is illustrated below via creating a high altitude challenge.

Students wish to simulate an ascent to the summit of Mount Mckinley (12,500 ft.), perhaps to compare the simulated data with actual data from a published experiment. The approximate barometric pressure at this height is 480 mmHg.

1) To begin

To set up HUMAN to run a physiological experiment, at the opening screen (see below)

web	o-Human Physiology Teaching Simul	ation
(Physiology)	ogy in Health, Disease and During T	reatment)
One click Experiments You must login to use the One click Experiments.	Login for Personalized Features Your login name: Your password: Login No account? Register for a free personal account. Start a Physiology Experiment Or Run a HUMAN Patient. Welcome to web-Human Version 9.	Resources About HUMAN- 1st time user How To - introductory tutoria Contact Roy Meyers Credits.

Click

- **Start a Physiology Experiment** (see above, middle)
- * always remember that if you wish to Save your experiment you must log in first (above, top)

This results in the typical opening *web*-HUMAN experiment screen seen in section 2 below. The model is now ready for an experiment to be set up and then run.

2) To set up your experiment

HUMAN is now ready to be set up at high altitude for a 6 day experiment while tracking the

<u>respiratory</u> and <u>blood gas responses</u> in its tables. The *setup* for this experiment is shown in the figure below and *the steps* involved in this setup are then described individually.

Skidmore College		Output from Web-HUMAN Physiology Simulation			<u>Manual</u> V	Manual Ver. 9.1-47 (7/29/11)		
DAY/HR 1-12:00 AM 1-12:10 AM	AP 99.78 99.69	COL 5.438 5.425	02DEBT 0.000 0.000	MFLOL 1.100 1.089	VENT 5.675 5.673	EXER 0.000 0.000		
View Output: PO2A as: graph Experiment Co	PCO2A graph mtrols	O2DEBT graph	VENT	BICARI gra	B 🗘 BARC ph 🗘 te Help	DP 🛟 xt 🛟		
Change Variab	le Enter	New Value	Info on 7	Variable	Hel Tips: H	p info on: Choose 🛟		
Run Experiment	nutes at 12	H minute	e intervals.		View Variable V Patient Cha Choose On	Value: Choose 🛟 arts or Lab tests:		
	Go) (Start Ov	er		Graph Sty Normalized	le Size: 600 🛟 d, one graph 🛟		

a) To <u>change the barometric pressure</u> (BAROP) from sea level value (760 mmHg) to 12,500 ft. value (480 mmHg).

Under **Change Variable** scroll down to BAROP and enter the new desired value (480).

b) To change the output table columns to read out ventilation and blood gas variables.

Under **View Output:** (first row) mouse columns 1 (AP) through 6 (EXER) to obtain output variable names for

HUMAN Variable	Physiologic variable*		
PO2A	Alveolar partial pressure O2 (mmHg)		
	Alveolar partial pressure CO2		

PCO2A	(mmHg)	
PH	Arterial blood pH	
VENT	Lung ventilation (Liters/min.)	
BICARB	Plasma bicarbonate (meq./Liter)	
BAROP	Barometric pressure (mmHg)	

* Use Help info on: <choose> for more info on any of these variables

c) To set up the graph to plot all 6 of these variables (be certain your browser popup blocking is off!)

1) Under **View Output as:** (upper left, 2nd row)

change each variable to as: **graph** from its default as:**text** (see VENT as an example) (This will result in output *both* as a Table and as a Graph)

- 2) Under Graph Style (lower right) simply retain the default choices of
 - a normalized plot (values will be shown as change from baseline control values) and
 - <u>one graph</u> (all 6 values will be shown on one single plot)

d) To setup to gather data for 6 days at 12 hour intervals

Under Run Experiment

- for <u>experiment duration</u> type in 6D (default is minutes, D = days, H = hours)
- for <u>printout intervals</u> type in 12H to yield printouts every half day

e) Click on **<Go>**

- this runs the experiment resulting in a tabular and a graphic output window.

- <u>Click on the Tabular window</u> to bring it to the foreground as shown in the "**Output From Web-HUMAN Physiology Simulation**" below.

3) The output of your experiment

- The output of the high altitude experiment, beginning on Day 1 at 12:10 a.m. (column #1)

Skidmore College			itput from W Physiology S	eb-HUMAN imulation	Manual Ver. 9.1-47 (7/29/11)		
DAY/HR	AP	COL	O2DEBT	MFLOL	VENT	EXER	
1-12:00 AM	99.78	5.438	0.000	1.100	5.675	0.000	
1-12:10 AM	99.69	5.425	0.000	1.089	5.673	0.000	
Barometric	Pressure	e (760. mmHg)		= 760.00		
Barometric	Pressure	e (760. mmHg)		= 480.00		
6.00000	Days	are 8640	.00 Min	utes			
12.0000	Hours	are 720.	000 Min	utes			
DAY/HR	PO2A	PC02A	PH	VENT	BICARB	BAROP	
1-12:10 AM	97.34	38.27	7.410	5.673	23.69	480.0	
1-12:10 PM	64.68	22.67	7.584	6.916	21.87	480.0	
2-12:10 AM	61.91	22.15	7.596	6.316	21.45	480.0	
2-12:10 PM	61.88	22.67	7.581	6.352	21.25	480.0	
3-12:10 AM	62.19	22.26	7.580	6.429	20.96	480.0	
3-12:10 PM	62.24	22.24	7.576	6.467	20.70	480.0	
4-12:10 AM	62.39	22.19	7.571	6.533	20.45	480.0	
4-12:10 PM	62.60	21.99	7.568	6.579	20.19	480.0	
5-12:10 AM	62.78	21.81	7.565	6.617	19.92	480.0	
5-12:10 PM	62.97	21.61	7.561	6.664	19.66	480.0	
6-12:10 AM	63.17	21.43	7.557	6.710	19.36	480.0	
6-12:10 PM	63.36	21.26	7.553	6.761	19.06	480.0	
7-12:10 AM	63.57	21.09	7.549	6.815	18.75	480.0	

shows

- an immediate hypoxia (drop in PO2A-column 2) due to the drop in BAROP.
- an increase in ventilation (VENT-column 5) in an attempt to compensate for the PO2 drop.
- a hypocapnia (PCO2A drops- column 3) due to the hyperventilation
- an increase in pH (column 4) indicating a respiratory alkalosis as a result of the PCO2 drop
- a plasma HCO3- drop, at least initially due to the hypocapnic hyperventilation.

<u>Click on the graph</u> to bring it to the foreground. It appears as shown below.

The graphic output (above) also clearly illustrates each of these trends.

Note, for example, the large increase in Ventilation (purple squares top) and the marked almost mirror image decrease in Arterial (blood) CO2 tension (green x, bottom).

4) Some other possibilities

a) <u>observations in this data</u>- the beginnings of a compensatory kidney-induced ('metabolic') acidosis

b) observations by setting up new tables (i.e. observing other variables)

- To peruse all available variables, use Help info on: <choose> for any variable and on the newly appeared Help screen select View summary of all

variables.

- select appropriate variables to track the developing polycythemia, increased hemoglobin, increased red cell production and increased blood viscosity.

c) new variations on the experimental design

- can the high altitude hypoxia be fully relieved by breathing 100% O2 (FO2AT) [fraction of O2 in atmosphere]?

- how compromised is the model's exercise endurance on Mckinley as compared to sea level (adjust EXER and XERMIN, testing in each environment at comparable exercise levels).